AirPipeSimAPI
Index
Ai4EComponentLib.AirPipeSim.AirSimplePipeAi4EComponentLib.AirPipeSim.AirStorageTankAi4EComponentLib.AirPipeSim.FlowPortAi4EComponentLib.AirPipeSim.FlowSourceAi4EComponentLib.AirPipeSim.PressureSourceAi4EComponentLib.AirPipeSim.TransitionPipe
AirPipeSim Components
Ai4EComponentLib.AirPipeSim.AirSimplePipe — MethodAirSimplePipe(; name, R, T)
Component: a single pipe or a pipe network with only one inlet and one outlet in steady state.
Assumptions
- The density or pressure of the air doesn't change too fast.
- Temperature of the pipe (pipe network) doesn't change. Default to 300K.
- Ideal gas law is avliable.
Function of this component:
\[p_{in}-p_{out}=Rq_m|q_m|\]
Parameters:
R: [kg^{-1}⋅m^{-1}] Resistance coefficient of a pipe (or pipe network)T: [K] Approximate temperature of the gas inside pipe.
Connectors:
in: Inlet of tankout: Outlet of tank
Ai4EComponentLib.AirPipeSim.AirStorageTank — MethodAirStorageTank(; name, V, T, p0)
Component: an air storage tank
Assumptions
- Ignore the pressure drop between inlet and outlet. The pressure everywhere inside tank equal to the inlet and outlet.
- Temperature of the tank doesn't change. Default to 300K.
- Ideal gas law is avliable.
Function of this component:
\[\frac{\mathrm{d}p}{\mathrm{d}t}=\frac{R_gT}{V}\left (q_{m,in}+q_{m,in}\right)\]
Parameters:
R_g: [J⋅kg^{-1}⋅K^{-1}] Ideal gas constant. For air is 287.11, which is unchangeable in this component.V: [m^3] Volume of the tank.T: [K] Temperature of the gas inside the tank.
Connectors:
in: Inlet of tankout: Outlet of tank
Arguments:
p_0: [Pa] Initial value of tank pressure.
Ai4EComponentLib.AirPipeSim.FlowPort — MethodFlowPort(; name, T)
A pipe port(inlet or outlet) in an pipe network.
States:
p(t): [Pa] The pressure at this portqm(t): [kg/s] The mass flow rate passing through this port
Parameters:
T: [K] The temperature of port. It'll be used in future develop.
Ai4EComponentLib.AirPipeSim.FlowSource — MethodFlowSource(; name, qm, T)
Component: a source (or sink) with constant mass flow rate
Parameters:
qm: [kg⋅s^{-1}] The mass flow rate this source supply or this sink absorb.T: [K] Temperature of the gas flow out (or into) this source (or sink). Default to 300K.
Connectors:
port: a FlowPort type subcomponent.
Ai4EComponentLib.AirPipeSim.PressureSource — MethodPressureSource(; name, p, T)
Component: a source (or sink) with constant pressure
Parameters:
p: [Pa] The pressure this source (or sink) supply.T: [K] Temperature of the gas flow out (or into) this source (or sink). Default to 300K.
Connectors:
port: a FlowPort type subcomponent.
Ai4EComponentLib.AirPipeSim.TransitionPipe — MethodTransitionPipe(
;
name,
λ1,
λ2,
λ3,
n,
f,
D,
L,
T,
pins,
pouts
)
Component: a single straight pipe in transition state.
Assumptions
- Ignore the difference in parameters on the same cross section. The flow inside pipe can be treated an 1-D flow.
- Temperature of the pipe (pipe network) doesn't change. Default to 300K.
- Ideal gas law is avliable.
Function of this component:
\[\frac{\partial p}{\partial t}=-\frac{R_{g} T}{A} \frac{\partial q_{m}}{\partial x} \\ \frac{\partial q_{m}}{\partial t}=\left(\frac{R_{g} T}{A} \frac{q_{m}^{2}}{p^{2}}-A\right) \frac{\partial p}{\partial x}-2 \frac{R_{g} T}{A} \frac{q_{m}}{p} \frac{\partial q_{m}}{\partial x}-\frac{f}{2 D} \frac{R_{g} T}{A} \frac{q_{m}\left|q_{m}\right|}{p}\]
Parameters:
Parameters:
R_g: [J⋅kg^{-1}⋅K^{-1}] Ideal gas constant. For air is 287.11, which is unchangeable in this component.T: [K] Temperature of the air.f: Friction factorD: [m] Diameter of the pipeL: [m] Length of the pipe
Connectors:
in: Inlet of tankout: Outlet of tank
Arguments:
λ1, λ2 and λ3: Three coefficient for other use like parameter estimation. They have no influence on simulation, and they are default to 1.n: The number of control volumes that the pipe be divided into equally.pins and pouts: [Pa] The initial pressure at the inlet and outlet of pipe. Simulation will start from the steady state of pipe at the boundary pins and pouts.