IncompressiblePipeAPI
Index
Ai4EComponentLib.IncompressiblePipe.CentrifugalPump
Ai4EComponentLib.IncompressiblePipe.ElbowPipe
Ai4EComponentLib.IncompressiblePipe.PipeNode
Ai4EComponentLib.IncompressiblePipe.SimplePipe
Ai4EComponentLib.IncompressiblePipe.Sink_P
Ai4EComponentLib.IncompressiblePipe.Source_P
Ai4EComponentLib.IncompressiblePipe._NodeEnergy
Ai4EComponentLib.IncompressiblePipe._h_f
Ai4EComponentLib.IncompressiblePipe._h_m
IncompressiblePipe Components
Ai4EComponentLib.IncompressiblePipe.CentrifugalPump
— MethodCentrifugalPump(; name, D, ω, c_0, c_1, ρ)
Component: CentrifugalPump
Ideal H-Q Characteristic curves of Centrifugal Pumps:
\[H_t=\frac{(r\omega)^2}{g}-\frac{\omega \cot\beta }{2\pi bg}Q=c_0\omega^2-c_1\omega Q=a_0-a_1Q\]
Parameters:
D
: [m
] Diameter of pipeω
: [r/min
] rotary speedc_0
: parameter in H-Q Characteristic curvesc_1
: parameter in H-Q Characteristic curves
Connectors:
in
: Inlet of pumpout
: Outlet of pump
Ai4EComponentLib.IncompressiblePipe.ElbowPipe
— MethodElbowPipe(; name, D, K, ρ, zin, zout)
Component: ElbowPipe(pipe with fixed local resistance loss coefficient f
)
Energy conservation equation in the form of Bernoulli Equation between two ports:
\[\frac{p_{in}}{\rho g} +\frac{8q_{in}^{2}}{\pi^2D^4g} + z_{in}= \frac{p_{out}}{\rho g} +\frac{8q_{out}^{2}}{\pi^2D^4g} + z_{out}+h_f+h_m\]
Parameters:
D
: [m
] Diameter of pipeK
: Local resistance loss coefficient
Connectors:
in
: Inlet of pipeout
: Outlet of pipe
Arguments:
zin
: [m
] The height of inlet portzout
: [m
] The height of outlet portρ
: [`m³/kg] The density of fluid passing the port
Ai4EComponentLib.IncompressiblePipe.PipeNode
— MethodPipeNode(; name, z)
A pipe port(inlet or outlet) in an pipe network.
States:
p(t)
: [Pa
] The pressure at this portq(t)
: [m³/s
] The volume flow passing through this port
Parameters:
z
: [m
] The hight of port, expressing potential energy
Ai4EComponentLib.IncompressiblePipe.SimplePipe
— MethodSimplePipe(; name, L, D, f, ρ, zin, zout, K_inside)
Component: SimplePipe(pipe with fixed friction factor f
)
Energy conservation equation in the form of Bernoulli Equation between two ports:
\[\frac{p_{in}}{\rho g} +\frac{8q_{in}^{2}}{\pi^2D^4g} + z_{in}= \frac{p_{out}}{\rho g} +\frac{8q_{out}^{2}}{\pi^2D^4g} + z_{out}+h_f+h_m\]
Parameters:
D
: [m
] Diameter of pipeL
: [m
] Length of pipef
: Friction factorK_inside
: Coefficient of local resistance loss inside the pipe
Connectors:
in
: Inlet of pipeout
: Outlet of pipe
Arguments:
zin
: [m
] The height of inlet portzout
: [m
] The height of outlet portρ
: [`m³/kg] The density of fluid passing the port
Ai4EComponentLib.IncompressiblePipe.Sink_P
— MethodSink_P(; name, p)
Component: Sink_P
Sink_P can be defined as a source(where fluids are from) or sink(where fluid are going to).
Connectors:
port
: port of sink
Arguments:
p
: [Pa
] The pressure of sink,default
: 101325 (standard atmospheric pressure)
Ai4EComponentLib.IncompressiblePipe.Source_P
— MethodSource_P(; name, D, z, ρ, p, K_inlet)
Component: Source_P(source with inlet pressure losses)
Parameters:
D
: [m
] Diameter of pipeK_inlet
: Local resistance loss coefficient of Inlet port,default
: 0.5
Connectors:
port
: port of source
Arguments:
z
: [m
] The height of sourceρ
: [m³/kg
] The density of fluidp
: [Pa
] The pressure of source,default
: 101325 (standard atmospheric pressure)
Ai4EComponentLib.IncompressiblePipe._NodeEnergy
— Method_NodeEnergy(node, D, ρ) -> Any
To get the energy at the port.
The governing equation of incompressible pipe network is Bernoulli Equation:
\[\frac{p}{\rho g} +\frac{v^{2}}{2g} + z=\mathrm{constant}\]
In volume flow form:
\[\frac{p}{\rho g} +\frac{8q^{2}}{\pi^2D^4g} + z=\mathrm{constant}\]
D
: [m
] Diameter of pipeρ
: [`m³/kg] The density of fluid passing the port
Ai4EComponentLib.IncompressiblePipe._h_f
— Method_h_f(node, f, L, D) -> Any
To get the loss of resistance along the pipe(between two ports).
In volume flow form:
\[h_f = f\frac{L}{D} \frac{8q^{2}}{\pi^2D^4g}\]
Ai4EComponentLib.IncompressiblePipe._h_m
— Method_h_m(node, K, D) -> Any
To get the local resistance loss the components.
In volume flow form:
\[h_m = K \frac{8q^{2}}{\pi^2D^4g}\]