IncompressiblePipeAPI
Index
Ai4EComponentLib.IncompressiblePipe.CentrifugalPumpAi4EComponentLib.IncompressiblePipe.ElbowPipeAi4EComponentLib.IncompressiblePipe.PipeNodeAi4EComponentLib.IncompressiblePipe.SimplePipeAi4EComponentLib.IncompressiblePipe.Sink_PAi4EComponentLib.IncompressiblePipe.Source_PAi4EComponentLib.IncompressiblePipe._NodeEnergyAi4EComponentLib.IncompressiblePipe._h_fAi4EComponentLib.IncompressiblePipe._h_m
IncompressiblePipe Components
Ai4EComponentLib.IncompressiblePipe.CentrifugalPump — MethodCentrifugalPump(; name, D, ω, c_0, c_1, ρ)
Component: CentrifugalPump
Ideal H-Q Characteristic curves of Centrifugal Pumps:
\[H_t=\frac{(r\omega)^2}{g}-\frac{\omega \cot\beta }{2\pi bg}Q=c_0\omega^2-c_1\omega Q=a_0-a_1Q\]
Parameters:
D: [m] Diameter of pipeω: [r/min] rotary speedc_0: parameter in H-Q Characteristic curvesc_1: parameter in H-Q Characteristic curves
Connectors:
in: Inlet of pumpout: Outlet of pump
Ai4EComponentLib.IncompressiblePipe.ElbowPipe — MethodElbowPipe(; name, D, K, ρ, zin, zout)
Component: ElbowPipe(pipe with fixed local resistance loss coefficient f)
Energy conservation equation in the form of Bernoulli Equation between two ports:
\[\frac{p_{in}}{\rho g} +\frac{8q_{in}^{2}}{\pi^2D^4g} + z_{in}= \frac{p_{out}}{\rho g} +\frac{8q_{out}^{2}}{\pi^2D^4g} + z_{out}+h_f+h_m\]
Parameters:
D: [m] Diameter of pipeK: Local resistance loss coefficient
Connectors:
in: Inlet of pipeout: Outlet of pipe
Arguments:
zin: [m] The height of inlet portzout: [m] The height of outlet portρ: [`m³/kg] The density of fluid passing the port
Ai4EComponentLib.IncompressiblePipe.PipeNode — MethodPipeNode(; name, z)
A pipe port(inlet or outlet) in an pipe network.
States:
p(t): [Pa] The pressure at this portq(t): [m³/s] The volume flow passing through this port
Parameters:
z: [m] The hight of port, expressing potential energy
Ai4EComponentLib.IncompressiblePipe.SimplePipe — MethodSimplePipe(; name, L, D, f, ρ, zin, zout, K_inside)
Component: SimplePipe(pipe with fixed friction factor f)
Energy conservation equation in the form of Bernoulli Equation between two ports:
\[\frac{p_{in}}{\rho g} +\frac{8q_{in}^{2}}{\pi^2D^4g} + z_{in}= \frac{p_{out}}{\rho g} +\frac{8q_{out}^{2}}{\pi^2D^4g} + z_{out}+h_f+h_m\]
Parameters:
D: [m] Diameter of pipeL: [m] Length of pipef: Friction factorK_inside: Coefficient of local resistance loss inside the pipe
Connectors:
in: Inlet of pipeout: Outlet of pipe
Arguments:
zin: [m] The height of inlet portzout: [m] The height of outlet portρ: [`m³/kg] The density of fluid passing the port
Ai4EComponentLib.IncompressiblePipe.Sink_P — MethodSink_P(; name, p)
Component: Sink_P
Sink_P can be defined as a source(where fluids are from) or sink(where fluid are going to).
Connectors:
port: port of sink
Arguments:
p: [Pa] The pressure of sink,default: 101325 (standard atmospheric pressure)
Ai4EComponentLib.IncompressiblePipe.Source_P — MethodSource_P(; name, D, z, ρ, p, K_inlet)
Component: Source_P(source with inlet pressure losses)
Parameters:
D: [m] Diameter of pipeK_inlet: Local resistance loss coefficient of Inlet port,default: 0.5
Connectors:
port: port of source
Arguments:
z: [m] The height of sourceρ: [m³/kg] The density of fluidp: [Pa] The pressure of source,default: 101325 (standard atmospheric pressure)
Ai4EComponentLib.IncompressiblePipe._NodeEnergy — Method_NodeEnergy(node, D, ρ) -> Any
To get the energy at the port.
The governing equation of incompressible pipe network is Bernoulli Equation:
\[\frac{p}{\rho g} +\frac{v^{2}}{2g} + z=\mathrm{constant}\]
In volume flow form:
\[\frac{p}{\rho g} +\frac{8q^{2}}{\pi^2D^4g} + z=\mathrm{constant}\]
D: [m] Diameter of pipeρ: [`m³/kg] The density of fluid passing the port
Ai4EComponentLib.IncompressiblePipe._h_f — Method_h_f(node, f, L, D) -> Any
To get the loss of resistance along the pipe(between two ports).
In volume flow form:
\[h_f = f\frac{L}{D} \frac{8q^{2}}{\pi^2D^4g}\]
Ai4EComponentLib.IncompressiblePipe._h_m — Method_h_m(node, K, D) -> Any
To get the local resistance loss the components.
In volume flow form:
\[h_m = K \frac{8q^{2}}{\pi^2D^4g}\]