IncompressiblePipeAPI

Index

IncompressiblePipe Components

Ai4EComponentLib.IncompressiblePipe.CentrifugalPumpMethod
CentrifugalPump(; name, D, ω, c_0, c_1, ρ)

Component: CentrifugalPump

Ideal H-Q Characteristic curves of Centrifugal Pumps:

\[H_t=\frac{(r\omega)^2}{g}-\frac{\omega \cot\beta }{2\pi bg}Q=c_0\omega^2-c_1\omega Q=a_0-a_1Q\]

Parameters:

  • D: [m] Diameter of pipe
  • ω: [r/min] rotary speed
  • c_0: parameter in H-Q Characteristic curves
  • c_1: parameter in H-Q Characteristic curves

Connectors:

  • in: Inlet of pump
  • out: Outlet of pump
source
Ai4EComponentLib.IncompressiblePipe.ElbowPipeMethod
ElbowPipe(; name, D, K, ρ, zin, zout)

Component: ElbowPipe(pipe with fixed local resistance loss coefficient f)

Energy conservation equation in the form of Bernoulli Equation between two ports:

\[\frac{p_{in}}{\rho g} +\frac{8q_{in}^{2}}{\pi^2D^4g} + z_{in}= \frac{p_{out}}{\rho g} +\frac{8q_{out}^{2}}{\pi^2D^4g} + z_{out}+h_f+h_m\]

Parameters:

  • D: [m] Diameter of pipe
  • K: Local resistance loss coefficient

Connectors:

  • in: Inlet of pipe
  • out: Outlet of pipe

Arguments:

  • zin: [m] The height of inlet port
  • zout: [m] The height of outlet port
  • ρ: [`m³/kg] The density of fluid passing the port
source
Ai4EComponentLib.IncompressiblePipe.PipeNodeMethod
PipeNode(; name, z)

A pipe port(inlet or outlet) in an pipe network.

States:

  • p(t): [Pa] The pressure at this port
  • q(t): [m³/s] The volume flow passing through this port

Parameters:

  • z: [m] The hight of port, expressing potential energy
source
Ai4EComponentLib.IncompressiblePipe.SimplePipeMethod
SimplePipe(; name, L, D, f, ρ, zin, zout, K_inside)

Component: SimplePipe(pipe with fixed friction factor f)

Energy conservation equation in the form of Bernoulli Equation between two ports:

\[\frac{p_{in}}{\rho g} +\frac{8q_{in}^{2}}{\pi^2D^4g} + z_{in}= \frac{p_{out}}{\rho g} +\frac{8q_{out}^{2}}{\pi^2D^4g} + z_{out}+h_f+h_m\]

Parameters:

  • D: [m] Diameter of pipe
  • L: [m] Length of pipe
  • f: Friction factor
  • K_inside: Coefficient of local resistance loss inside the pipe

Connectors:

  • in: Inlet of pipe
  • out: Outlet of pipe

Arguments:

  • zin: [m] The height of inlet port
  • zout: [m] The height of outlet port
  • ρ: [`m³/kg] The density of fluid passing the port
source
Ai4EComponentLib.IncompressiblePipe.Sink_PMethod
Sink_P(; name, p)

Component: Sink_P

Sink_P can be defined as a source(where fluids are from) or sink(where fluid are going to).

Connectors:

  • port: port of sink

Arguments:

  • p: [Pa] The pressure of sink, default: 101325 (standard atmospheric pressure)
source
Ai4EComponentLib.IncompressiblePipe.Source_PMethod
Source_P(; name, D, z, ρ, p, K_inlet)

Component: Source_P(source with inlet pressure losses)

Parameters:

  • D: [m] Diameter of pipe
  • K_inlet: Local resistance loss coefficient of Inlet port, default: 0.5

Connectors:

  • port: port of source

Arguments:

  • z: [m] The height of source
  • ρ: [m³/kg] The density of fluid
  • p: [Pa] The pressure of source, default: 101325 (standard atmospheric pressure)
source
Ai4EComponentLib.IncompressiblePipe._NodeEnergyMethod
_NodeEnergy(node, D, ρ) -> Any

To get the energy at the port.

The governing equation of incompressible pipe network is Bernoulli Equation:

\[\frac{p}{\rho g} +\frac{v^{2}}{2g} + z=\mathrm{constant}\]

In volume flow form:

\[\frac{p}{\rho g} +\frac{8q^{2}}{\pi^2D^4g} + z=\mathrm{constant}\]

  • D: [m] Diameter of pipe
  • ρ: [`m³/kg] The density of fluid passing the port
source